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Abstract. We consider a finite-time heat engine in which the temperatureT (t) of the working
fluid during heat exchanges with the hot and cold reservoirs is determined passively by the
heat capacity of the fluid. The set of feasible operations of this engine, whose irreversibility
arises solely from the temperature difference between the reservoir(s) and the working fluid,
is described in terms of an inequality which sets limits on the rateP of work output and
the rateD of entropy production associated with a cycle that takes place in timeτ . Those
operations that lie on the boundary of this set are the ones that achieve a specified work output
and entropy production in minimum time; this leads naturally to a notion of time efficiency
for any operation within the set. The results obtained here extend our previous framework for
Carnot-like processes to examine the time efficiency, as well as the power efficiency, of the
corresponding Otto- and Brayton-cycle based engines. The present results and the earlier ones
can be seen as two extremes of a continuum in which the external control on the temperature
of the working fluid varies between (i) passively allowing theT (t) corresponding to a constant
heat capacity response and (ii) actively achieving any desiredT (t).

1. Introduction

In recent years considerable progress has been made in understanding the performance of
finite-time heat engines and in elucidating the rules that govern in-principle limits to energy
conversion in such devices. Since finite-time heat engines are necessarily irreversible,
their efficiency is considerably reduced below the corresponding Carnot valueηR and, in
fact, comes much closer to the efficiency of the more realistic engines actually employed in
industry. This has motivated researchers to pursue the subject of finite-time thermodynamics
with some zeal, as a result of which a significant body of knowledge relevant to this field
has accumulated to date [1–3].

Even though other sources of irreversibility cannot be ignored [4, 5], major attention in
this area has been given to heat engines whose irreversibility arises solely from the transfer
of heat between thermal reservoirs and the working fluid across boundaries sustainingfinite
temperature differences [6]. Assuming that the heat exchange is driven by a heat source
or a heat sink at a constant temperature, and that the temperature of the working fluid is
treated as a controllable variable, then no generality is lost by taking the heat exchange to
be isothermal. This is due to the fact that the optimal control of the process demands that
we maintain the temperature of the working fluid fixed while it is conducting business with
one reservoir or the other. Such control is usually achieved by coupling the working fluid
to a work reservoir. In the present investigation we consider the case when the working
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fluid is subject to some constraint that precludes its temperature from being controllable.
For instance, during an Otto-like (or Brayton-like) cycle with an ideal gas, the volume
(or the pressure) of the gas is held fixed during the heat exchange; it is then necessary
either to vary the temperature of the reservoir or to consider the process of heat transfer as
non-isothermal. Here we re-examine the case where the variation in the temperature of the
working fluid during the heat exchange branch is well modelled by a constant heat capacity
response. Note that this includes the Otto and Brayton cycles, provided theCV and theCp

of the working fluid are constant. Similar problems have been treated before in the papers
of Landsberg and Leff [7] and of Gordon and Huleihil [8]. There is an important difference
between these two studies, however. While Gordon and Huleihil considered a finite-time,
irreversible engine in which the temperature,Text(t), of the external body (source or sink)
is related to but differs from the temperature,T (t), of the working fluid by a finite amount,
Landsberg and Leff looked at a quasi-static, reversible engine in whichText, at all times,
differs infinitesimally fromT ; of course, in each case bothText and T vary with time,
making the processes of heat transfer non-isothermal.

In the light of these studies we decided to extend our own recent analysis of finite-time
heat engines [9, 10] (hereafter referred to as I and II, respectively) to include the possibility
of non-isothermal heat transfers. We preferred to stick to the notion offixed temperatures for
the reservoirs and permit only the temperature of the working fluid to be time-dependent; the
temperature difference between the system and the reservoir(s) is then necessarily finite and
the heat transfer processes inevitably irreversible. Maintaining the characteristic feature of
our approach, namely the adoption of a reservoir-oriented viewpoint and the establishment
of inequalities governing the outcome of finite-time processes, we analysed the problem
of heat engines involving non-isothermal heat transfers in terms of quantities that are of
direct practical concern. In section 2 we set up our basic inequality governing the entropy
changes,σ 0

1 andσ 0
2 , of the two reservoirs in terms of the time,τ , of the cycle of processes

involved. This serves to delimit the physically feasible cycles in terms of their net effects.
In section 3 we render this inequality into a more practical one in terms of thepower P

and thedegradationD associated with the cycle, and examine some of its more obvious
consequences. In section 4,P andD are expressed in terms of a natural set of parameters—
α, related to the allocation of time between the two heat exchange branches, andβ, a
parameter introduced in section 3 and related to power-efficiency. Section 5 explores the
connection between improved performance and a higher degree of adiabatic control of the
working fluid. Here the improvement is reflected in the fact that the same net effects are
achieved in a shorter time. This sets the stage for a discussion of time-efficiency in section 6.
Section 7 looks at certain limiting cases and makes some connections to the previous work
of other authors.

2. The basic inequality

We consider a cycle of processes to which a given heat engine is subjected and examine
the net environmental changes brought about by the cycle. We first focus our attention on
the process of heat transfer between the hot reservoir at temperatureT 0

1 (assumedfixed) and
the working fluid, which will be regarded as our thermodynamic system, at temperatureT1

(assumedvariable); see figure 1. Assuming the heat-transfer law to be alinear one, the
rate of flow of heat into the system is given by

dQ

dt
= κ(T 0

1 − T1) (1)
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Figure 1. The cycle undergone by the working fluid, showing temperatures at various stages of
the cycle. Note that, for allS, the ratioT2(S)/T1(S) is independent ofS.

whereκ is the thermal conductance of the surface of contact between the reservoir and the
system. The resulting rate of change of the system temperatureT1 is given by

dT1

dt
= κ

C
(T 0

1 − T1) (2)

whereC is the heat capacity of the system. Denoting the initial value ofT1 by T1i and the
duration of the process byτ1, the final value ofT1 on this branch of the cycle turns out to
be

T1f = T 0
1 − (T 0

1 − T1i )e
−κτ1/C. (3)

The accompanying changes in the entropy of the system and of the reservoir, assuming
endoreversibility, are given by

σ1 = C ln(T1f /T1i ) (4)

and

σ 0
1 = −C

T1f − T1i

T 0
1

(5)

respectively. Eliminating the temperature variables among these equations, we obtain

C

σ 0
1

= (1 − eσ1/C)−1 − (1 − e−κτ1/C)−1. (6)

Similar considerations may be applied to the process of heat transfer between the cold
reservoir at temperatureT 0

2 and the system at temperatureT2(t), with the results

T2f = T 0
2 + (T2i − T 0

2 )e−κτ2/C (7)

σ2 = −C ln(T2i/T2f ) (8)
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and

σ 0
2 = C

T2i − T2f

T 0
2

(9)

whereσ2 and σ 0
2 are the entropy changes of the system and of the cold reservoir on the

lower branch of the cycle whileτ2 is the duration of the corresponding process. Eliminating
T s from equations (7)–(9), we get

C

σ 0
2

= (1 − eσ2/C)−1 − (1 − e−κτ2/C)−1. (10)

Finally, combining equations (6) and (10), and remembering that the net change,σ1 + σ2,
in the entropy of the system is zero, we obtain

C

σ 0
1

+ C

σ 0
2

= 1 − (1 − e−κτ1/C)−1 − (1 − e−κτ2/C)−1 = − sinh(κτ/2C)

2 sinh(κτ1/2C) sinh(κτ2/2C)
(11)

whereτ = τ1 + τ2. Assuming the adiabatic processes linking the upper and lower branches
of the cycle to be instantaneous,τ becomes the total time of the cycle. Agrawalet al have
made a study in which this assumption is relaxed [11].

It is quite straightforward to see that, for a givenτ , the right-hand side of (11) is
maximum whenτ1 = τ2 = τ/2. This leads to our basic inequality

C

σ 0
1

+ C

σ 0
2

6 − coth
( κτ

4C

)
. (12)

For τ � C/κ, expression (12) becomes independent ofC, namely

1

σ 0
1

+ 1

σ 0
2

6 − 4

κτ
(13)

which agrees with our earlier result

σ 0
1 + σ 0

2 > −4σ 0
1 σ 0

2 /κτ (14)

pertaining to a cycle withisothermalheat transfers; see equation (2) of II. This agreement
is not surprising because, forτ � C/κ, the variation in the temperatureT1 of the system
along the upper branch and the variation inT2 along the lower branch of the cycle are quite
negligible—making heat transfer processes essentially isothermal.

At this point we are tempted to introduce aneffectivethermal conductanceκ∗, defined
by

κ∗ = (4C/τ) tanh(κτ/4C). (15)

This enables us to write (12) in a form similar to (13), namely

1

σ 0
1

+ 1

σ 0
2

6 − 4

κ∗τ
. (16)

Consequently, many of the results reported in I and II can be adapted to the present problem
by simply replacingκ by κ∗. In figure 2 we have plottedκ∗ as a function ofτ . We note
that, for τ � C/κ, κ∗ ∼= κ; however, asτ increases,κ∗ decreases monotonically and, asτ

becomes large in comparison withC/κ, κ∗ vanishes asτ−1. Thus, the effective conductance
is highest in the limitτ → 0. An interpretation of this result will be given in section 5.

An interesting consequence of the fact that our heat transfer processes are non-isothermal
is seen when our inequality is written in a form similar to (14); we then have

σ 0
1 + σ 0

2 > −4σ 0
1 σ 0

2 /κ∗τ (17)
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Figure 2. The effective thermal conductanceκ∗ as a function of the cycle timeτ . Note that as
τ tends to zero,κ∗ approachesκ.

which sets a positive lower bound on the total entropy production of the cycle. In the limit
τ → ∞, this becomes

σ 0
1 + σ 0

2 > −σ 0
1 σ 0

2 /C (18)

which differs rather significantly from the corresponding result,σ 0
1 + σ 0

2 > 0, pertaining,
in the same limiting case, to a cycle with isothermal heat transfers. Clearly, the bound
set by (18) arises from the fact that, in the case of non-isothermal heat transfers, even for
τ → ∞, the temperature difference between the system and the reservoir(s) remains finite
for much of the duration of the cycle; the processes involved are, therefore, irreversible and
the quantity(σ 0

1 + σ 0
2 ) strictly positive.

3. Thermodynamic limitations of the finite-time cycle

We shall now examine the implications of the inequality (17) in terms of thepowerP (which
denotes the average rate at which work is performed in the cycle) and thedegradationD

(which denotes the average rate at which the entropy of the universe increases during the
cycle):

P = W

τ
= Q1 − Q2

τ
= −T 0

1 σ 0
1 − T 0

2 σ 0
2

τ
(19)

and

D = σ 0
1 + σ 0

2

τ
(20)

which lead to the inverse relationships

σ 0
1 = −τ

P + T 0
2 D

T 0
1 − T 0

2

(21a)

σ 0
2 = τ

P + T 0
1 D

T 0
1 − T 0

2

. (21b)

Substituting (21) into (17), we get

(P + T 0
1 D)(P + T 0

2 D) − 1
4κ∗(T 0

1 − T 0
2 )2D 6 0. (22)
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With T 0
1 , T 0

2 andκ∗ given, the inequality (22) sets definitive limits on the values that the
quantitiesP andD can have in any cycle of operations conducted in timeτ . Employing the
(P, D) plane as the forum for distinguishing between the outcome of one cycle and that of
another, see figure 3, we observe that the limitations imposed by (22) confine the feasible
values ofP andD to the spacewithin andon the hyperbola defined by the equality in (22).
Thus, for any specified value ofP ,

D1(P ) 6 D 6 D2(P ) (23)

whereD1 andD2 are the roots of the quadratic equation representing the hyperbola. The
power generated ismaximumwhenD1(P ) = D2(P ); this happens in a cycle depicted by
the point A, with

Pmax = 1
4κ∗

(√
T 0

1 −
√

T 0
2

)2

(24a)

D(Pmax) = Pmax√
T 0

1 T 0
2

= 1
4κ∗

(
4

√
T 0

1

T 0
2

− 4

√
T 0

2

T 0
1

)2

. (24b)

To determine the efficiency of this cycle as well as of others, we proceed as follows.

Figure 3. Representation of a cyclic processC in the (P, D) plane. The pointA pertains to
the production of maximum power.

Quite generally, the power efficiencyη of a cycle is given by

η = Pτ

−T 0
1 σ 0

1

= T 0
1 − T 0

2

T 0
1

P

P + T 0
2 D

= ηR

1

1 + T 0
2 m

(25)

where ηR(= 1 − T 0
2 /T 0

1 ) is the efficiency of the corresponding Carnot cycle, while
m(= D/P) is the slope of the straight line joining the origin O with the representative
point (P, D) of the cycle under study; see figure 4. WithT 0

1 and T 0
2 given, the power

efficiency of the cycle is determined solely by the slope of this line and, in consequence,
the ‘lines of constantη in this picture are the radial lines emanating from the origin’. The
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efficiency of the cycle withmaximumpower production is determined by the slope of the

line OA which, by equation (24b), is 1/
√

T 0
1 T 0

2 ; consequently,

η(Pmax) = ηR

1

1 +
√

T 0
2 /T 0

1

= 1 −
√

T 0
2

T 0
1

(26)

which turns out to be the same as the standard Novikov–Curzon–Ahlborn result [12, 13].

Figure 4. The power efficiencyη of a cyclic processC is determined by the slope of the line
OC. The line OA, along whichη has the Curzon–Ahlborn valueηCA, divides the allowed space
into two parts—the upper one withη < ηCA and the lower one withη > ηCA.

For a broader understanding of the situation, we may relate the power efficiencyη

with the temperatures,T1 andT2, of the system itself as it goes through the cycle. In this
context, we note that the system temperatures at the four corners of the cycle, see figure 1,
are mutually related by the fact that the entropy excursion,σ1, on the upper branch of the
cycle is the same as the one,|σ2|, on the lower branch. Equations (4) and (8) then give

T1f

T1i

= T2i

T2f

(27)

so that
T2f

T1i

= T2i

T1f

= β (28)

say. A little reflection shows that the temperatureT2 anywhere on the lower branch of the
cycle bears the same ratio,β, to the temperatureT1 directly above it. The quantityβ is,
therefore, a well defined parameter of the problem—despite the fact that bothT1 and T2

vary with time. Now, since the amounts of heat,Q1 andQ2, transferred during the cycle
are given by

Q1 = −T 0
1 σ 0

1 = CT1i

(
T1f

T1i

− 1

)
(29)
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and

Q2 = T 0
2 σ 0

2 = CT2f

(
T2i

T2f

− 1

)
(30)

respectively, see equations (5) and (9), the power efficiency of the cycle is also given by

η = 1 − Q2

Q1
= 1 − T2f

T1i

= 1 − β (31)

(see equations (27) and (28) as well). Equating (25) and (31), we obtain a direct
correspondence between the quantitiesβ andm, namely

β = β0 + T 0
2 m

1 + T 0
2 m

(32a)

m = β − β0

1 − β

1

T 0
2

(32b)

whereβ0 = T 0
2 /T 0

1 . It follows that the radial lines in figure 4 are also lines of constantβ.

4. Alternative representation of the cyclic process

We shall now express our principal quantitiesP and D in terms of the parameterβ
introduced in section 3 and the timesτ1 and τ2 spent by the system in contact with the
reservoirs 1 and 2, respectively. For this we substitute expressions (21) forσ 0

1 andσ 0
2 into

(11), to obtain

P = C

τ

(T 0
1 − T 0

2 )2m

(1 + T 0
1 m)(1 + T 0

2 m)

2 sinh(κτ1/2C) sinh(κτ2/2C)

sinh(κτ/2C)
. (33)

Next, we use relation (32b) to eliminatem in favour of β, to get

P = C

τ
T 0

1
(β − β0)(1 − β)

β

2 sinh(κτ1/2C) sinh(κτ2/2C)

sinh(κτ/2C)
. (34)

Finally we utilize expression (15) for the effective conductanceκ∗, to write

P = 1

4
κ∗T 0

1 α
(β − β0)(1 − β)

β
(35)

where

α = sinh(κτ1/2C) sinh(κτ2/2C)

sinh2(κτ/4C)
6 1 (36)

equality holding whenτ1 = τ2 = τ/2. It follows that

D = mP = 1

4
κ∗α

(β − β0)2

ββ0
. (37)

Clearly,α andβ constitute a natural set of parameters for describing the cycle under study.
We shall now make some observations on the foregoing results.

First of all, the dependence ofP on β is such that, for any givenα, P is maximum
whenβ =

√
β0, giving

P̃ = 1
4κ∗α

(√
T 0

1 −
√

T 0
2

)2

(38a)

D(P̃ ) = 1
4κ∗α

(
4
√

T 0
1 /T 0

2 − 4
√

T 0
2 /T 0

1

)2

(38b)
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(cf equations (24a, b), which correspond to the optimal caseα = 1). Next, for any given
β, both P and D are directly proportional toα. Clearly, this dependence stems from the
‘manner in which the total timeτ is split into the time intervalsτ1 and τ2 spent on the
upper and lower branches of the cycle, respectively’. The more even the split, the larger is
α; in the limit whenτ1 andτ2 become equal,α assumes its largest possible value of 1 and,
with it, P andD assume their largest possible values consistent with the given value ofβ.
Of course, ifα = 1 andβ =

√
β0, we recover the truly optimal value ofP , namely the

one given by (24a).
Our result for the maximum power turns out to be larger than the one obtained by

Gordon and Huleihil [8]. Unfortunately, their argument contains a subtle flaw. They make
inappropriate use of an equation that relates a temperature profileT (t) of the working
fluid with an associated profileT 0(t) for the temperature of the heat source or sink. That
equation correctly provides the optimalT (t) for a specifiedT 0(t). They, however, apply
the equation in reverse by specifying theT (t) appropriate for an isochore and then claiming
that the equation provides the optimalT 0(t) for a constant-volume process. To see the
flaw in their argument in a somewhat simpler context, consider a functionf (x, y) of two
variables. The maximum off with respect toy for a specifiedx = x0 may yield an optimal
valuey∗ of y, but the maximum off with respect tox for giveny = y∗ may not be atx0.
Try, for example,f (x, y) = x2 + xy + y2, with x0 = 2. The roles ofT 0(t) andT (t) in the
Gordon–Huleihil argument are played here by the variablesx andy, respectively.

5. Control of the working fluid and optimal performance

As can be seen from the factorκ∗ in equation (35) and figure 2, the power of these engines
is a decreasing function of the cycle timeτ . Indeed, the maximum power occurs only in
the limit as the cycle timeτ tends to zero! In the discussion below, we will see that this
result can be reinterpreted to show that, for machines operating in a given cycle time, it is
the increased control of the working fluid that results in an improved performance.

In the processes considered here the state of the working fluid is continually changing but
that change isactivelycontrollable (in terms of the operating parameters) only during the two
(instantaneous) adiabatic branches, when the temperature of the working fluid is effectively
initialized in preparation for the following heat exchange; during the heat exchange itself,
the state of the working fluid ispassivelydetermined by its relaxation dynamics with respect
to the heat source or sink.

In such engines, the working fluid is under minimal control. Suppose additional control
is made possible by allowing the temperature of the working fluid to be reset adiabatically
at discrete times during the heat exchange. For instance, let the working fluid, in its
encounters with each of the reservoirs, experiencen passive episodes of equal duration,
τ/2n, punctuated byn − 1 discrete instants when its temperature is restored adiabatically
to the initial value,T1i (or T2i), that marked the onset of its interface with the current hot
reservoir 1 (or cold reservoir 2); as before, the encounter with each reservoir is terminated
with an adiabatic transition to the other, resulting in 2n adiabats altogether (see figure 5).
The sequence of passive heat-exchange episodes might be denoted schematically by

H1H2 . . . HnC1C2 . . . Cn (39)

whereH andC represent contact with reservoirs 1 and 2, respectively.
Since the duration,τ/2n, of each episode is specified, the dynamic temperature profile

of the working fluid during the sequence is completely determined by the choice of the two
parametersT1i andT2i . However, since (39) is to represent one cycle of the operation of a
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Figure 5. A representation of the cyclic process (39) containing 10 adiabats. This is equivalent
to the process (40), which consists of 5 cycles.

heat engine, the entropy, as well as the temperature, of the working fluid must be restored at
the end of the sequence, i.e. the temperaturesT1i andT2i cannot be chosen independently.
It is enough that they be chosen to satisfy the conditionσ1 +σ2 = 0, whereσ1, respectively
σ2, represents the entropy change of the working fluid during any of the (identical)H ,
respectivelyC, episodes.

Now since the net effects of the cycle, i.e. the work and entropy production, depend
only on the heat-exchange episodes, this sequence can be reordered in time, with the same
net effects, to producen successive cycles,HkCk, of the minimal-control type that we have
studied in this paper, namely

H1C1H2C2 . . . HnCn. (40)

Each pairHkCk is itself a cycle, as a result of the conditionσ1+σ2 = 0 imposed above. The
important point is that the power produced by the cycle (39) is the same as that produced
by the sequence of cycles (40) and, hence, the same as that produced by each constituent
cycle HkCk.

The shift in viewpoint from (39) to (40) enables us to understand how the added control
in (39) affects its optimal performance as an engine with cycle timeτ ; the additional adiabats
in (39) reduce its ‘effective’ cycle time to that ofHkCk. For example, if eachHkCk in
(40) produces maximal power for its cycle time ofτ/n, then the power produced by (39)
is given by, see (24a):

Pmax(τ, n) = 1
4κ∗(τ/n)

(√
T 0

1 −
√

T 0
2

)2

. (41)

Now in the limit asn → ∞ we see from figure 2 thatκ∗(τ/n) → κ and (41) approaches
the well known result of Novikov–Curzon–Ahlborn [12, 13], which gives the maximum
power achievable when the temperature of the working fluid is fully controllable. The
freedom to insert an infinite number of adiabats brings with it the choice to come arbitrarily
close to an isothermal operation. The present way of achieving this is along the lines
adopted in [2], where the distribution of contacts is the quantity optimized.
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6. Time efficiency

Consider a cyclic process operating for a timet of, perhaps, many cycles. In paper II we
introduced the concept oftime-efficiencyof such a process as a measure of how efficient
the process is when compared to a similar one that yields the same work outputW(= P t)

and the same entropy production1Su(= Dt) in the shortestpossible timet∗. The time-
efficiency of the process in question is then given byθ = t∗/t .

It is straightforward to see that if the cyclic process pertaining tot∗ is denoted by the
point (P ∗, D∗) and the one under study by(P, D), then the ratiost∗/t , P/P ∗ andD/D∗ are
all equal. The value ofP is given by equation (35); the value ofP ∗ is obtained from (35) by
settingα andκ∗ equal to their maximal values—namely 1 andκ, respectively. Since both
processes produce the same net effects in their respective times,P/D andP ∗/D∗ are equal;
hence the parameterβ is the same for both processes. It follows that the time-efficiency of
a (two-adiabat) cyclic process of the type that we have discussed, with branch timesτ1 and
τ2 and total cycle timeτ , is given by

θ(τ1, τ2) = P/P ∗ = α(τ1, τ2)γ (τ ) (42)

where we have found it useful to introduce the dimensionless parameterγ (τ) = κ∗(τ )/κ.
The factorα(τ1, τ2), see equation (36), measures the efficiency of the time allocation

between the two heat-exchange branches; its maximum value is 1 whenτ1 = τ2 = τ/2,
independently of the cycle timeτ . The second factorγ (τ), see equation (15), can be
interpreted as the maximum time-efficiency realizable by (two-adiabat) processes of cycle
time τ . More generally, in view of the discussion in the previous section, the maximum
time efficiency for a cycle with 2n adiabats is given by

γ (τ/n) = 4nC

κτ
tanh

( κτ

4nC

)
. (43)

7. Concluding remarks

The fact that the heat-transfer processes in our model arenon-isothermal affects our
final results in two distinct ways—first by introducing an effective conductanceκ∗, as
in equation (15), and second by modifying the form of the functionα(τ1, τ2), as in
equation (36). Whereasα can be made as large as 1 (simply by choosingτ1 = τ2) regardless
of the total timeτ , κ∗ depends rather crucially onτ ; see figure 2. Forτ � C/κ, we recover
results pertaining to the case ofisothermalheat transfers, for then

κ∗ → κ (44a)

α → 4τ1τ2

τ 2
. (44b)

This yields the maximum possible power insofar as conductivity is concerned, though the
total work output in this case diminishes proportionately withτ ; this observation agrees
with a similar one made by Feldmannet al [14] in connection with a finite-time heat engine
in which the working medium consists of non-interacting two-level systems. On the other
hand, forτ � C/κ, κ∗ → 4C/τ , with the result that now the quantitiesP andD tend to
vanish while the total work outputW and the total entropy production1Su tend to finite
values

W = CT 0
1 α

(β − β0)(1 − β)

β
(45a)
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1Su = Cα
(β − β0)2

ββ0
. (45b)

The fact that our working fluid has afinite heat capacity expresses its influence most vividly
in this limit.

Before closing this section we would like to emphasize that, for a given set of values
of the parametersα and β, the system temperaturesT1i , T1f , T2i and T2f are all well
defined—except for aduplicity arising from the allocation of the time intervalsτ1 andτ2 to
one heat-transfer branch or the other. Withτ1 specified, the temperaturesT1i andT1f are
related by equation (3) and withτ2 specified, the temperaturesT2i and T2f are related by
equation (7). At the same time, we have two relations, in equations (28), that bind these
quantities throughβ. The net result is that, with no choice left to us,

T1i = T 0
1 (1 − e−κτ1/C)e−κτ2/C + (T 0

2 /β)(1 − e−κτ2/C)

1 − e−κτ/C
(46a)

T1f = T 0
1 (1 − e−κτ1/C) + (T 0

2 /β)(1 − e−κτ2/C)e−κτ1/C

1 − e−κτ/C
(46b)

T2i = βT1f (46c)

T2f = βT1i . (46d)

For τ1, τ2 � C/κ, we recover results pertaining to isothermal heat transfers, namely

T1i
∼= T1f

∼= T 0
1

τ1

τ
+ T 0

2

β

τ2

τ
(= T1, say) (47a)

T2i
∼= T2f

∼= βT1 (= T2, say). (47b)

On the other hand, forτ1, τ2 � C/κ, we have instead

T1i
∼= T 0

2 /β T1f
∼= T 0

1 (48a)

T2i
∼= βT 0

1 T2f
∼= T 0

2 . (48b)

The total work output is then given by

W = Q1 − Q2 = C{(T1f − T1i ) − (T2i − T2f )} ∼= C(T 0
1 + T 0

2 − βT 0
1 − β−1T 0

2 ) (49)

which agrees with the limit stated in (45a), sinceα in the present case is essentially equal

to 1. Expression (49) ismaximumwhenβ =
√

T 0
2 /T 0

1 , making

T1i
∼= T2i

∼=
√

T 0
1 T 0

2
∼=

√
T1f T2f (50)

with the corresponding

W ∼= C

(√
T 0

1 −
√

T 0
2

)2

(51a)

Q1
∼= C

(
T 0

1 −
√

T 0
1 T 0

2

)
(51b)

andη the same as in (26). This case resembles most closely the one studied by Landsberg
and Leff [7], though there is a vital difference between the two. While the cycle employed
by Landsberg and Leff is areversible one (taking an infinite time to accomplish and
requiring, on each heat-transfer branch, a sequence of reservoirs with continually varying
T 0), the cycle studied here is a finite-timeirreversible one (requiring only two reservoirs
at temperaturesT 0

1 andT 0
2 , to which the system temperaturesT1 andT2 tend asτ becomes
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large). Consequently, while the net entropy production,1Su, in their case is zero, we have
a finite entropy production, given by

1Su = −C(T1f − T1i )

T 0
1

+ C(T2i − T2f )

T 0
2

∼= C

(
4

√
T 0

1

T 0
2

− 4

√
T 0

2

T 0
1

)2

(52)

in agreement with the limit stated in (45b), with α = 1 andβ =
√

β0.
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